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The one-dimensional Coulomb system is known to have equilibrium states with 
nonvanishing electric field. These states are shown here to be analogous, and 
related, to the 0 vacua which have been discussed for gauge theories in two or 
more space-time dimensions. The system exhibits confinement of fractional 
charges, which we dicuss with the purpose of offering a simple example of the 
0-vacua phenomenology. Precise relations and connections between one- 
dimensional Coulomb gases and two-dimensional Abelian gauge theories, and 
quantum-mechanical matter systems, are discussed. 

KEY WORDS: Coulomb systems; 0 vacua; confinement; one-dimensional 
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1. I N T R O D U C T I O N  AND S U M M A R Y  OF RESULTS 

It  has been recently shown that, at fixed values of the the rmodynamic  

parameters,  the one-d imens iona l  Cou lomb  gas has a one-parameter  family 
of equi l ibr ium states with a generally nonzero expectat ion value of the 

electric field. (1) In  that paper  a po in t  of view was adopted which offers a 

unified unders tand ing  of the occurrence of those states a nd  of the breaking 
of t ransla t ion symmetry  in the one-d imens ional  je l l ium model,  due to the 
format ion  of a Wigner  lattice. (2'3) 

In  this note  we show that the existence of a one-parameter  family of 

equi l ibr ium states in the one-d imens iona l  Cou lomb gas is a p h e n o m e n o n  
closely related to that of the wel l -known 0 vacua in gauge field theories on 
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a space-time of dimension 2 or more. (4) Furthermore we describe an 
analogy between the behavior of fractional charge correlations in the 
Coulomb gas and that of the expectation of a fractionally charged Wilson 
loop in two-dimensional Abelian gauge theories. 

The Coulomb gas may be analyzed both from a point of view of 
statistical mechanics, including an approach based on the electric fieM 
ensemble, (5) and a more field theoretical point of view involving the 
sine-Gordon (Siegert) representation. (6) This second approach serves to 
exhibit close connections between the one-dimensional Coulomb gas and 
two-dimensional Abelian Higgs models. In both models one finds a family 
of 0 states and "confinement" of fractional charges. The first point of view 
may serve to interpret those phenomena, exhibited here in what may be 
their simplest manifestation, in a language more familiar to the expert in 
statistical mechanics. 

The purpose of our note is primarily a pedagogical one. The occurrence 
of the 0-states phenomenology in a one-dimensional system, as well as most 
of the connections and analogies which we point out, may be well known to 
experts, in one way or another. 

We conclude the introduction with a brief summary of the sections of 
this note. In Section 2 we review the electric field ensemble, and reconsider 
the 0 states and the 0 dependence of the free energy in the one-dimensional 
Coulomb gas. In Section 3 we recall the sine-Gordon representation for the 
one-dimensional Coulomb gas, discuss the connection with the Mathieu 
equation, and present a construction and analysis of 0 states in the 
sine-Gordon representation. This representation is very useful for investi- 
gating "instanton effects" and comparing them with exact results. In 
Section 4, properties of fractional charge correlations and their 0 depen- 
dence are studied. It is shown that, in the 0 = 0 state, two opposite 
fractional charges, immersed in the system, feel an approximately constant 
attractive Coulomb force ("confinement of fractional charges"). In other 0 
states the force can be attractive or repulsive--depending on 0 and the 
value of the fractional charge. In the latter case the fractional charges are 
expelled to screen charged sources at + ~ .  Section 4 is concluded with 
some comments on the screening properties and the decay rate of more 
general correlations in the one-dimensional Coulomb gas (absence of 
exponential Debye screening). In Section 5 we compare the results of 
previous sections with analogous, and known, results for Abelian gauge 
theories (quantum electrodynamics) in two space-time dimensions. We also 
point out some differences. Section 6 contains some conclusions and open 
problems. Among them a somewhat interesting one concerns the properties 
of a many-component one-dimensional Coulomb gas with irrationally 
related charges, for which we suggest a possibility of a phase transition. 
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Although that gas is quite unphysical it can perhaps be used to study 
properties of one-dimensional Schr6dinger operators with quasiperiodic 
potentials. 

2. 0 STATES OF THE ONE-DIMENSIONAL COULOMB GAS 

The Coulomb interaction in one dimension is described by the poten- 
tial energy 

V({oi, q~}) = _ 1 2 o ,  o j [q_  Clji (2.1) 
l,j 

of a configuration of charges, % located at positions qi ~ •; V ( x ) =  
-~ioilx - qi] satisfies the Poisson equation 

d V ( x )  = 2 ~ o f l ( x  - q~) (2.2) 
dx 2 i 

For a neutral gas of charges o i = _+ e (confined to an interval [ - L, L]), 
one defines the partition function, ~-L(fl, z), and computes the "free en- 
ergy," Po(fl, z), as follows: 

o ~  
. z o  
.~L( fl, z )  = ~ ,  ~. dql . . . dq, exp[-,SV({o~,qi)~=~ . . . . . .  )] 

n = O  a l - -  _ e  " �9 " 

20,=0 -L (2.3) 

P0( fl, z) = lim ~ In ~'L( fl, z) (2.4) 
L - - - ~  m z/-,p 

Here z is the fugacity, which is taken to be equal for both species of 
charges, and fl is the inverse temperature. 

P0(/3, z) was found in Lenard (7) and Prager (s) to be 

Po( fl, z ) =  inf spec[ - e2fl d2 l - -  + 2z(cosx + 1); on L2(~) (2.5) 
dx 2 

The corresponding spectral problem is the Mathieu equation, which is well 
studied. O) 

The above result was obtained in Ref. 7 by the analysis of neutral 
clusters. However, as was pointed out and used in subsequent papers of 
Edwards and Lenard ~6) and Lenard, ~5~ the Coulomb systems may be 
analyzed from other points of view. One (discussed in the next section) 
involves the sine-Gordon transformation, and yet another one results from 
focusing the attention on the electric field, E ( x ) =  - d V ( x ) / d x ,  as the 
basic variable describing the systemJ 5~ The latter point of view was used in 
Aizenman and Martin O) to show that a neutral Coulomb system admits a 
one-parameter family of distinct equilibrium states, obtained by placing the 



350 Aizenman and Fr6hlich 

system in a constant electric field. In the remainder of this section we shall 
briefly summarize the argument. 

At a constant external field, D, the total energy of a system of charges 
in the interval [ - L ,  L] is 

H may be expressed as a functional of the total electric field, E(x) = D + 
~ioisgn(x - qi), by the following electrostatic identity: 

The electric field in this system is piecewise constant and has jump 
discontinuities, of magnitude _+ 2e, at the positions of the charges. Let us 
denote by u(dE) the measure, on the space of all such electric field 
configurations, characterized by the following two conditions (which are 
equivalent for all values of x 0 E R): 

(i) v({E(.)lE(xo)= u ) ) =  1, Vu ~ R. 
(ii) For a given value of E(xo), the subsequent jumps, by _2e,  of 

E(x) as a function of x are mutually independent and occur with equal 
densities z. 

It may be easily seen (1'5) that the measure on the electric field 
ensemble, induced by the a priori distribution of charges [which is de- 
scribed by the summation and integration in the right-hand side of (2.3)] is 
8E(_L),e(L)8(E ( -  L))v(dE). The first factor is a Kronecker 8 and reflects 
the neutrality of the ensemble. The seond is a Dirac 8 function and must be 
replaced by 8 ( E ( -  L) - D) when there is an external field D. 

The partition function in the external field may now be expressed as 
follows: 

B, z; D ) = f L) - D ) 

•  fL_ xlE(x)l 2 (2.8) 

It may be shown that large fluctuations in E( . )  are suppressed by the 
Gibbs factor in (2.8), and that in the thermodynamic limit, L ~  ~ ,  E( . )  
attains a limiting distribution. (s'O (This is not the case for the electric 
potential.) In order to understand the dependence of this distribution on D, 
one is advised to consider the Coulomb screening in one dimension, and its 
limitations. When an external field is applied, it is screened to a large extent 
by an accumulation of charges near the boundary. However, screening is in 
general incomplete since the field produced by a charge is constant. This is 
drastically reflected in the fact that the range of values of E( . )  is given by 

E(x) E D + 2e7/, Vx ~ I~ (2.9) 
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Thus the limiting state for E( . )  has a nontrivial dependence on 0 

= Dmod. 2e" 
The above structural argument does not yet show that in the different 

limiting states for E( . )  the electric charges are distributed differently, since 
two electric field configurations which differ only by an overall constant 
correspond to the same charge configuration. However, if one can show 
that for "typical" configurations in the above limiting states the total 
electric field can, in some way, be reconstructed from the positions of the 
charges, then it would follow that the charge distribution depends on D. 
This is the approach of Ref. 1, where the following statements were proven. 

Proposition 1. (i) For each value of D, E( . )  has a limiting probabil- 
ity distribution which depends only on 0 = Dmod, 2e" Furthermore, these "'0 
states" are Markovian and translation invariant in x, and satisfy (2.9). 

(ii) The average field in the o states, (E)o, does not vanish except for 
0 = 0,e. 

(iii) The following relations are satisfied with probability 1 in each 0 
state: 

E(x) l i m 2  Z ~ qi - x )  = - + ( E > o  
r--~'~ qiE[x,x + r] r 

= + ( E > o  (2.10) 
r-~oo qiE[x--r,x] r 

(iv) In each 0 state, with probability 1, 

lim exp[ i2Tr r -~  L q,~[o,d(r)(~)J--exp[i2rgg(O)]  (2.11) 
qi 

where g(-)  is a strictly increasing function of 0. �9 

Equation (2.11), derived by exponentiating (2.10), is an explicit charac- 
terization of typical charge configurations, distinguishing the various 
0 states. Other, somewhat surprising features of (2.10), are discussed in 
Ref. 1. 

The free energy of a neutral Coulomb gas in an external field D can 
also be calculated from (2.8). By an application of the Feynman-Kac  
formula, the partition function may be rewritten as the kernel of an 
operator on 12(0 + 2eZ), which is the transfer matrix for E( . )  [constrained 
by (2.9)], namely 

-~r(fl, z; D )  = exp[ - 2 L ( - z A  + ~ f lE2) ] ( -L ,L )  (2.12) 

Here A is the discrete Laplacian, defined by 

(~ f)(u)  = f (u  + 2e) + f(u  - 2e) - 2f(u) (2.13) 



352 Aizenman and grohlich 

and E is a multiplication operator, given by 

(if, f )(u) = uf(u) (2.14) 

The "free energy" is now easily seen to be 

Po( fi, z)= lim -~L lnY.c( fl, z;D ) 
L-- )  oo 

=infspec((--zA+�88 on 12(O+ 2eZ)) (2.15) 

In the Fourier-transformed representation, on L2([-~r, ~r]), the above 
operator becomes e2fl(id/dx + 0/2e) 2 + 2z(cosx + 1). The unitary trans- 
formation by U= e -ix~ transforms this operator to -e2flho + 
2z(cosx + 1), where the Laplacian h 0 is defined with the boundary condi- 
tions f ( -~r )  = f(~)e i:€176 Therefore (2.15) may be rephrased as follows. 

Proposition 2. The free energy which corresponds to the 0 states, 
Po(fl, z), is given by the lowest-band eigenvalue of -eZfih + 2z(cosx + 1) 
[on L2(R)], at the Bloch momentum k = 0/2e. [] 

In the next section we shall discuss the 0 states from a field theoretic 
point of view. 

3. THE COULOMB GAS IN THE SINE-GORDON REPRESENTATION 

3.1. Sine-Gordon Representation 

The sine-Gordon representation offers a powerful approach to the 
study of systems with pair interations of positive type, including Coulomb 
systems (with a neutrality condition in one and two dimensions). Its 
application to one-dimensional Coulomb systems first appeared in the work 
of Edwards and Lenard. (6) 

Let p(x) = ~aiS(x - qi) denote the charge density. The Gibbs factor 
in (2.3), with the imposed neutrality condition, can be expressed by the 
following functional integral: 

exp[- ~ f f dxdyo(x)lx- fiO(Y)] "8~dx~(x),o 

= ( (exp[  ifdxo(x)O(x)])) (3.1) 

Here ( ( - - )}  represents an average over Brownian paths, 0(x), with x as 
"time" parameter, whose initial point, 0(0), is uniformly averaged over R. 
Alternatively, ( ( - - ) )  may be regarded as the limiting normalized expecta- 
tion for a Gaussian random field 0((x) with covariance ( f i ( -A) -1  + e2)-1, 
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c$0, and the Gibbs factor may be viewed as 

exp[- Bff f fdxdyo(x)(-A)-~O(y)] 
( -  A)- 1 being the quadratic form which is + oo, unless f dx p(x) = 0. 

Equation (3.1) leads to the following expression for the partition 
function: 

~,L(B,z)=((exp{2zf'_rrdxcos[eq,(x)]}} ) (3.2) 

The correlation functions have a related expression, 

O(L)( { oi, qi} ) ---- ( j~=lexp[ ioj~(qj) ] ) (L) (3.3) 

where 

= 

( 3 . 4 )  

One convenience of the above formalism lies in the Markov property 
of ~, which was used by Edwards and Lenard (6) to prove the existence of 
the limit for correlation functions. It also lends itself to an application of 
correlation inequalities, used in Fr6hlich and Park (~~ to prove the existence 
and monotonicity properties of the correlation functions for a wide class of 
systems in arbitrary dimension. 

The state of the field @(.) described by <--> = limL_~<--> (L), can be 
represented by the formal measure 

--j--lv~12-2zcos(e~(x))l}/norm" (3.5) 

Thus, in addition to the local fluctuations, which resemble a Brownian 
motion, ~ has a bias towards the values @ = 2~rn/e, n ~ Z. Similarly to 
( ( - - ) ) ,  the state ( - - )  does not tie down q,, and involves an average over 
periodic shifts. However, its restriction to periodic functions of ~,, with 

period 2~r/(,ffl e), corresponds to a well-defined positive probability distri- 
bution. In particular, (3.3) holds also in the limit L ~ oo. 

The variational equation derived from the action in (3.5), 

- fi -~h@ = 2ze sin[ eq~(x) ] = 0 (3.6) 
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has an "instanton" ("anti-instanton") solution with boundary values 
~( -oo)  = O, ~(+ oo)= +2~/e .  One may expect that in the state ( - - )  the 
field ~ typically fluctuates in the vicinity of functions which locally mini- 
mize the action, resembling a gas (i.e., a superposition) of instantons and 
anti-instantons (with some interaction). 

To summarize, the field e0(.) is conjugate, via Fourier transformation, 
to the charge density field O('). The distribution of ~ is governed by an 
action with a term - (  fl -I/2)f dx [V~[ 2 coming from the Gibbs factor, and 
a term f dx2zcos(eeo) corresponding to the a priori distribution of the 
charges. That the second term is real is a consequence of charge symmetry. 
The positivity of the measure for ~ is a rather powerful tool in deriving 
various properties of a more general class of systems. (~l~ 

3,2, 0 States 

Having introduced the "vacuum state" ( - - )  corresponding to the 
neutral Coulomb gas, we shall now construct what corresponds to the 0 
states discussed in Section 2. We shall show in Section 5 that this is an 
analogous construction to that of the 0 vacua which were widely discussed 
in models with gauge fields in higher dimensions. (4) 

In order to place the neutral gas in an external field D = 0, one may 
put a fixed pair of charges + 0//2 at opposite ends of the system. Equation 
(3.1) implies therefore that the correlation functions in the 0 states are given 
by the following limits: 

p~o)({oi, qi})= l i m -  " -(fieia'~(q')/(L) (3.7) 
L---~oo \ - -  l i = l  t O  

where 
= 

/ ( ( exp [  i ~ ~b(L)lexp[- i ~ ~b(-L)]exp{ 2Zf?LdXCos[e,(x ) ] } ) )  

(3.8) 
The 0 states correspond to the states 

( - - ) e  = lim (--)(0 L) (3.9) 
L - + ~  

whose statistical mechanical interpretation is similar to that of the state 
( - - )  = (--)o; see (3.3), (3.4). Formally, 

expl/ o( , lexp{-/ 0 - l= exp I , 1 
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Therefore, the modification of the action density which yields the state 
( - - )0  is the addition of the term i�89 Note that the random field 
- i (d/dx)~(x)  corresponds to the electric field, (6) e.g., 

_ i  d d (F (x))o=2fiygPo(3, ) (3.11) 

The integral 

e-e- f dx d ep( x v 

is also the "instanton charge," i.e., counts the number of instantons minus 
the number of anti-instantons. Thus, (3.10) has the significance of assigning 
a complex fugacity to the instantons, and its conjugate to the anti- 
instantons, in the "instanton gas." (Incidentally, the instanton solutions of 
the Mathieu equation are of course the time-independent soliton solutions 
of the classical sine-Gordon equation.) 

4. "CONFINEMENT" IN 0 STATES 

An interesting feature of the 0 states is the "confinement" of fractional 
charges, which in Section 5 will be related to the confinement bounds for 
the "Wilson loop"; see Ref. 12. 

Let us consider the equilibrium distribution of a pair of charges + a 
inserted into a neutral Coulomb gas. We fix the charge + a at the origin. If 
the Coulomb gas is in one of the 0 states then, using the sine-Gordon 
representation discussed in the previous section, the equilibrium distribu- 
tion of the change - a  is determined by the following function: 

e~; o(x) = (ei~(~ (4.1) 

There are now two qualitatively different possibilities: 
(i) If f~_~dxp~;o(x ) = oo, then the charge - a  would drift away and 

would not be observed in any finite region. 
(ii) If f~_~dxp,~;o(x)< o~, then the charge - a  has a probability 

distribution on the line, whose density is O~; o ( x ) / f ~  dYo~; o(Y). 
In the second case, the charges exhibit "confinement." Such a situation 

would not be observed in systems with short-range interactions. 
The asymptotic behavior of 05; 0 is described by the following result. 

Proposition 3. For any 0 E [0, 2e), a ~ 

Iim -~rll ln(ei~4~(~ = Po+2~(fl, z) - Po(fl, z) (4.2) 
x--->-t- o~ (_) ~ -~  (_) 

extending the definition of Po periodically in 0. 
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The proof of (4.2) involves a rather straightforward application of the 
transfer-matrix formalism and is not given here in full detail. Let us remark 
that (4.2) can also be shown using the electric field formulation, where 
p~;o(x) is obtained by an integral similar to (2.8). However, the electric 
field is now constrained by 

0 + 2eZ, y ~ I0,x]  
E(y)@ O+2asgnx+2e~_, y ~ [ 0 , x ]  (4.3) 

In fact, the transfer matrix formalism leads to the stronger conclusion, that 

lim (ln(ei~'~'(~ , o ( f i ,  z ) ] ) = C +  (4.4) 
x---) + oo (-)  (-) 

for some, explicitly known, constants C+, C_ ~ (0, 1]. In addition to the 
asymptotics described in Proposition 3 and (4.4) we have the following 
upper bounds. 

Proposit ion 4. For arbitrary 0 E [0, 2e), ~ ~ ~, 

Iexp{-]x][eo+2,(fi, z ) -  eo(,8,z)]}, x > 0  
(ei~'(~176 [xl[Po_2,~(,8,z ) Po(,8,z)]), x < 0  

(4.5) 

Proof. It follows from the general theory of reflection positivity, (13'14) 
or from the existence of a self-adjoint transfer matrix, that the states ( - - )0  
are reflection positive; i.e., for all functons F depending only on {~(x) : x 

[o, oo)), 
(F(R~) F(q~) ) o >1 0 (4.6) 

where (Rep)(x)=-e~(-x). [Inequality (4.6) can also be deduced from the 
Markov and reflection properties of ( - - )0 ;  see, e.g., Ref. 15.] 

By (4.6), we can apply the chessboard estimate (13) which yields 

n--I ) l/n 
<eic~[q~(~176 ( k~--Oei~['~(kx)-~'((k+l)x)] 0 

= ( ei~['~(O)-~(nx)l)lo/n ( 4 . 7 )  

from which Proposition 4 follows by taking n ~ ~ and applying (4.2). 
Another, basically equivalent proof follows directly from the existence of a 
self-adjoint transfer matrix and the spectral theorem which imply that 
(ei~[,(o)-,(x)l)l/Ixl is increasing in Ix[. II 

Proposition 2 relates Po( fl, z) to a well-studied function of 0. (9) It has 
its minimum at 0 = 0, is strictly increasing in 0 on [0, el and is symmetric 
abou t  0 = e. These propert ies together with Proposi t ion 4 imply 
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"confinement" of charges which are fractional, in units of e, in the 0 = 0 
state. In the 0 = e state, the second charge is always expelled to infinity, 
since Pe+2~(fl, Z) -- Pe(fl, z) is negative for a ~ O, mode .  In other states we 
will generally observe both types of behavior, depending on the value of a. 
Moreover, for suitable 0 and a the second charge is confined in (x > O} 
and expelled in (x < O) (or vice versa). 

We conclude this section with some comments on the cluster proper- 
ties of the standard equilibrium state, (--)0=o, of the Coulomb gas. It 
might be tempting to interpret the exponential decay of the fractional 
charge correlation ( e i a e ~ 1 7 6  as Ix[--> oo, as some sort of screening. 
This interpretation is not correct, and the behavior of the fractional charge 
correlation really shows that the electric field produced by a fractional 
charge cannot be shielded by the charges belonging to the ensemble. The 
opposite situation occurs in the two- or higher-dimensional Coulomb gas 
(with a Coulomb potential regularized at short distances), for which 
Brydges (16) has proven exponential Debye screening, at small /3 and 
moderate value of z. It follows from his results that 

(e i~i~(~ -->M( fl, z)2> 0 (4.8) 
Ixl-~oo 

if fl and z are chosen such that Debye screening holds; see also Ref. 11. 
Thus, even the logarithmic Coulomb potential between two fractionally 
charged sources immersed in a two-dimensional Coulomb gas can be 
shielded by the charges in the ensemble, provided fl is small enough and 
z > 0 is suitable. In three or more dimensions, (4.8) is true for arbitrary fl 
and z, in two dimensions it holds only in the plasma phase of the gas with 
Debye screening. (10 Finally, we show that in the one-dimensional Cou- 
lomb gas there are correlations with an arbitrarily slow power falloff, for all 
values of/3 and z, so that there is no exponential Debye screening. For this 
purpose, we choose two sequences, {%} and {Cn}, with the properties 
a n 5/= a m for n ~ m, a n ~ O  as n o  oo, and ~]7=01Cn[ 2 < ~ ,  and we define an 
observable 

A (e~) = ~,, C,e i~"~ 
n = O  

Since, by the neutrality condition, 

(e~"~~ 0 
for fractional a v ~ a'  we have 

(A(,~(0))a(~(x))) = ~ ICnl2{e'~ol*~~ 
n = O  

> k [C~I 2e-�89 (4.9) 
n = O  
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The last inequality follows by Jensen's inequality. (10 By choosing {a,} and 
{C,} suitably, (A(~(0))A (~(x))) may be given an arbitrarily slow power 
falloff. 

5. THE ANALOGY BETWEEN THE ONE-DIMENSIONAL COULOMB 
GAS AND TWO-DIMENSIONAL QUANTUM ELECTRODYNAMICS 

In this section we recall some analogies and a connection between the 
one-dimensional Coulomb gas and quantum electrodynamics in two space- 
time dimensions, describing charged matter fields c) (scalar), 't' (Dirac 
spinor) . . . .  with electromagnetic interactions. We adopt the Euclidean 
description of relativistic quantum field theory. (17) 

In two-dimensional space-time all matter currents built from charged 
scalar and Dirac spinor fields are functionals of scalar Bose fields ~, X, �9 �9 �9 ; 
see Refs. 18, 19. Thus, as long as we do not wish to describe charged 
sectors, the theory can be described entirely in terms of scalar Bose fields 
and the electromagnetic vector potential, A,, which, however, could be 
eliminated by explicit integration. This observation permits one to analyze 
two-dimensional quantum electrodynamics--even spinor QED-- in  terms 
of Euclidean functional integrals. Subsequently, we will make use of this 
simplification--mainly in order to simplify the exposition. 

The interaction between matter and the electromagnetic field is de- 
scribed by the term 

ie f J.(x, t)A "(x ,  t) dx dt (5.1) 

in the total Euclidean action {g(q~, X . . . .  ;A~), where e is the electric charge 
and 

j ,  = j *  + j x  + . . .  (5.2) 

is the total Euclidean electromagnetic current, with j*~, j x  the contributions 
coming from r and X, respectively. The Euclidean vacuum expectation is 
given by the formal functional measure 

d~0(~b, X . . . .  ;A~,) = " Z - ' e  -~(q''x .. . .  ; a ~ ) I I d ~ ( x ) d x ( x  ) �9 ". 1-IdA~(x) '' 
X X,~t 

(5.3) 
The mathematical existence of measures dtz(q~,X,.., ;A~) for the models 
mentioned above has been verified in Refs. 19, 20 (spinor QED) and in 
Ref. 21 (scalar QED, or, respectively, Higgs model). From the functional 
measure (5.3) the theory on the vacuum sector can be reconstructed. (iv) 

We now analyze the effect of coupling, in addition to the quantized 
matter fields, a classical current, j~lass, describing two c-number charged 
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sources at spatial _+ oo to the electromagnetic field. This contributes an 
additional term 

6~ = i f j2laSS(x, t)A U(x, t) dx at (5.4) 

to the Euclidean action ~. The current j~ lass is conserved, hence it satisfies 
the continuity equation 

0 U y =  0 (5.5) 

Since space-time is two-dimensional, the solutions of equation (5.5) have 
the form 

j~,~s = _ % 37. (5.6) 

where f is a scalar function, and ~ -- 0 for # = v, % = sign(/~, u) otherwise. 
We now suppose that j~la~s is the current corresponding to two classical 
sources with fractional charge + 8/2, placed at x -- + L, which appear at 
(imaginary) time t = - T and disappear at t -- T. Hence the support of j2 lass 
is the loop fiLx r which is the boundary of the rectangle 

c x  r-{(x, t) : lxl-< L,[tl-< r} 
Since the charges of the classical sources are + 8/2, the correct choice of 
the function f appearing in (5.6) is 

f ( x ,  t) = �89 r(X, t) 

where XL• r is the characteristic function of L • T. By (5.4) and (5.6) 

3r  = 8gOcxr = i O / 2 ~ e x / . ( ~ ) d ~ "  

= iO/2fF(x,  t)xL• r(x, t) dx dt (5.7) 

where F =  curiA is the Euclidean electromagnetic field strength. As in 
Section 3, (3.8)-(3.10), we now introduce a perturbed functional measure, 
giving rise to a 0 vacuum: 

+ o ( ~ , X , . . .  ;At) 
- - 1  0 

= lim (Z~215 e-8eL• . . . .  ;Au) 
L, T--> oo 

[o 1 = Lr-~lim ( Z ~ 2 1 5  x d ~  @o(~,X . . . .  ;A.) 

(5.8) 
Indeed, this formula is strictly analogous to formulas (3.8)-(3.10) for the 0 
state of the one-dimensional Coulomb gas (respectively, the imaginary-time 
description of the Bloch electron with momentum ~r0/e). In analogy to that 
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case, the term (e/2~r)~A.(()d~ can be interpreted as counting the differ- 
ence between the number of instantons and the number of anti-instantons. 
In the case of the two-dimensional Higgs model the instantons are the 
vortices. The classical field equations do have vortex solutions, and the 
magnetic flux of these solutions is "quantized": 

lira ~ ? ~ ( ~ ) d ~ = s  t )dxdt= 2---7-~n, n ~ Z  
L , T - ~ o o  Lx  2 F(X' e 

Thus 

lim exp A~(~)d~ ~ 
L,  T--> oe L x 

is periodic in 0 with period 2e. We may therefore expect that dl*o(r X, �9 �9 ; 
At) is periodic in 0 with period 2e, too. This property has been established 
for spinor QED, in bosonized form, in Refs. 22, 19 and for scalar QED or, 
respectively, the Higgs model on a two-dimensional lattice in Ref. 21. In 
both cases the physics depends nontrivially on 0. For 0 v ~ 0, e, for example, 
the expectation of the electric field in a 0 vacuum is nonzero, (='~9) as in the 
one-dimensional Coulomb gas. Let 

c 0-- - lira ~TTln(Z~  (5.9) 
L , T - - > ~  

denote the vacuum energy density, normalized so that % = 0. [The exis- 
tence of the limit on the right-hand side of (5.9) is a standard consequence 
of reflection positivity.] The function e 0 is the analog of Po(fi, z). It is 
symmetric about 0 = e, a property it shares with Po (,8, z). 

Let E be the real-time electric field. Then 

d (5.10) -i(F(x))o= (E(x))0= 2 c0 
see Refs. 22, 19, and 21. We note that equation (5.10) corresponds to 
equation (3.11) for the one-dimensional Coulomb gas. Analogously- to 
Proposition 4 exists the following proposition. 

Proposition 5. 

(exp[ ia~L• exp{-4LT[eo+2~-Co]  } 

This inequality was found in Ref. 23 and, independently, in Ref. 21. 
The proof is a standard consequence of reflection positivity and is very 
similar to the one of Proposition 4. Proposition 5 shows that if c0+2~ > c 0 
then the expectation of the Wilson loop, exp[ia~eL• in the 0 
vacuum has what is called area decay. The physical interpretation of this 
fact is that two static sources of fractional charge +_ a, separated by a 
distance 2L, feel a constant, attractive force with potential 2[c0+2~ - e0] �9 L. 
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It is obvious from the definition of e o that ~0/> e0 = 0, for all 0 ~ (0, 
2e). In fact, by a result of Brydges et a/. (12) which we recall below, 

e 0 > %  for 0 < 0 ~ < e  (5.11) 

for the two-dimensional lattice Higgs model. Thus, in the state (--)0=0, 
static, fractionally charged sources are permanently confined. On the other 
hand, for 0 = e, e0+2~ < e0, thus the sources repel each other by a constant 
force; see, e.g., Ref. 24. In other states both types of behavior may occur, 
depending on the value of a, in analogy with the situation met in the 
one-dimensional Coulomb gas described in Section 4. Finally, we men- 
tioned a particularity of the quantum field theories which is not found in 
the Coulomb gas: At 0 = e a phase transition may occur, as the values of 
the coupling constants of the theory, in particular the electric Charge, are 
varied. There may exist two distinct vacua, ( - - )e+ and ( - - ) e_ ,  with 

{ E(X))e+ = - ( E(X))e_ 4= 0 (5.12) 

This corresponds to e 0 having a discontinuous first derivative at 0 = e. The 
theories determined by the states (--)e_+ have a charged (soliton) sector. 
Proofs of the existence of that transition and of soliton sectors in a variety 
of two-dimensional models can be found in Ref. 25; see also Ref. 12. 

We conclude this section by recalling a connection between two- 
dimensional lattice Higgs models and the one-dimensional lattice Coulomb 
gas found in Ref. 12. In that reference the following inequality is proven for 
the corresponding lattice models: 

( e x p ( i a ~ L •  { (e-i~O(L)ei~'(-L)) } T (5.13) 

the right-hand side of (5.13) being the fractional charge correlation in the 
lattice Coulomb gas. The proof consists of applying correlation inequalities 
of the Ginibre type; see Ref. 12. Inequality (5.13) together with the results 
of Section 4 imply area decay of the Wilson loop expectation in the 0 = 0 
vacuum for arbitrary values of the coupling constants. By using (5.13) to 
study the asymptotics of (exp(i@~L• o, as L, T-->oc, and 
applying Proposition 5 we obtain inequality (5.11), as announced. For 
results in four-dimensional, non-Abelian Yang-Mills theories see, e.g., 
Refs. 4, 26. 

6. CONCLUSIONS,  OPEN PROBLEMS 

In this paper we have obtained results on the structure of equilibrium 
states and the behavior of fractional charge correlations in the one- 
dimensional Coulomb gas. These results are the analog of well-known 
results concerning 0 vacua and confinement of fractional charges in models 
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of two-dimensional QED (and four-dimensional non-Abelian Yang-Mills 
theories). It is the point of this note to summarize and compare those two 
circles of ideas and results, in a pedagogical and rather pedestrian way. We 
hope that this may contribute a grain of stimulation for field theorists and 
statistical mechanicians to follow each other's ideas with an open mind. 
Since the reader may have gained the impression that one-dimensional 
Coulomb gases (and two-dimensional Abelian gauge theories) are, by now, 
overstudied topics, we conclude with a short selection of comments and 
open problems, designed to convince him or her that this need not be quite 
so. (1) It is amusing to note that the theory of the one-dimensional Bloch 
electron, in its functional integral (imaginary-time) version isomorphic to 
the one-dimensional two-component Coulomb gas, is also isomorphic to 
the quantum mechanics of the spherical pendulum in a constant gravita- 
tional field. This connection is obvious for 0 = 0. The theory for 8 :~ 0 
corresponds to quantizing the pendulum in a rotating frame corresponding 
to a gravitational field that rotates with uniform angular velocity O~ The 
reader may verify this as an exercise. (We thank G. Gallavotti for drawing 
our attention to this example.) (2) One may study a Coulomb gas consisting 
of 2n species of particles with charges ___ me and activities Zm, m = 1, 
2 . . . . .  n, n < oo. The study of this system is equivalent to that of the 
spectral properties of Hill's operator, 

_ /3-1  d 2 - -  + 
du 2 

(6.1) n 

V(u) = 2 G zmcos(meu) 
m = l  

The equivalence is seen in the same manner as the relation between the 
standard two-component Coulomb gas and the Mathieu equation; see 
Sections 2 and 3. The operator defined in (6.1) has been studied in great 
detail in Ref. 27. The results for the generalized Coulomb gas emerging 
from that reference, and the various phenomena, are qualitatively the same 
as the ones for the two-component gas. For this reason we omit its further 
discussion. (3) More interesting is the study of an "exotic" Coulomb gas of 
2n species of particles with changes +em and activities z m, m = 1 . . . . .  n, 
n < ~ ,  where some of the charges are irrationally related. As in Sections 2 
and 3 one shows that the theory of this gas is isomorphic to the functional 
integral (imaginary-time) formulation of the quantum mechanics of 
a nonrelativistic particle of mass f l /2  in a quasiperiodic potential, V(u),  
given by 

V(u)  = 2 ~ ZmCOS(e,,u ) (6.2) 
m = l  
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The Schrrdinger Hamiltonian of this system is 

H ~ - /3  -1 d2 - -  + V ( u )  (6.3) 
du 2 

Under suitable assumptions on { zm) and (em ), Dinaburg and Sinai (28) and 
Rfissmann (29) have shown that the spectrum of H has a band structure. In 
that region of activities and charges, the qualitative behavior of the corre- 
sponding Coulomb gas is similar to the standard two-component gas. (In 
particular, there is a family of equilibrium states, "confinement" of certain 
charges and no exponential Debye screening, as discussed in Section 4.) It 
might happen, however, that for a suitable choice of (e,~) and sufficiently 
large activities, zm, screening sets in. This could be so, because external 
sources with arbitrary charge a can possibly be screened by particles in the 
ensemble, since a can be approximated by numbers ~ = l k , , , e m ,  k,,, E Z. 
Thus, if the source with charge a is surrouned by km particles of charge 
-era,  m = 1 , . . . ,  n, its charge is screened almost completely. Such config- 
urations might be quite likely if the activities are large enough and if the 
approximation of a by ~"m=lkmem is fast in the sense that the error 
becomes quite small already for "small" values of ~m~0[km[. Screening in 
this exotic Coulomb gas would mean that the associated Schrrdinger 
operator introduced in (6.2), (6.3) has an eigenvalue at the bottom of its 
spectrum. This speculation, and hence the existence of phase transitions as 
fl, (e m ), and (z m } are varied, are somewhat supported by recent results of 
Aubry. (3~ (We thank H. Kunz for an instructive discussion of this point.) 
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